342 research outputs found

    Motilin receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. These receptors promote gastrointestinal motility and are suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibiotics (often called motilides; e.g. erythromycin), although for many of these molecules the evidence is sparse

    Motilin receptor (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. Activation of these receptors by endogenous motilin released from endocrine cells within the mucosa of the duodenum during fasting, induces propulsive phase III movements, part of the gastric migrating motor complex, and promotes the sensation of hunger. Drugs and other non-peptide compounds which activate the motilin receptor may generate a more long-lasting ability to increase cholinergic activity within the upper gut, to promote gastrointestinal motility; this activity is suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibiotics (often called motilides; e.g. erythromycin), although for many of these molecules the evidence is sparse. Relatively high doses of these compounds may induce vomiting and in humans, nausea

    Endothelin receptors and their antagonists.

    Get PDF
    All three members of the endothelin (ET) family of peptides, ET-1, ET-2, and ET-3, are expressed in the human kidney, with ET-1 being the predominant isoform. ET-1 and ET-2 bind to two G-protein-coupled receptors, ETA and ETB, whereas at physiological concentrations ET-3 has little affinity for the ET(A) receptor. The human kidney is unusual among the peripheral organs in expressing a high density of ET(B). The renal vascular endothelium only expresses the ET(B) subtype and ET-1 acts in an autocrine or paracrine manner to release vasodilators. Endothelial ETB in kidney, as well as liver and lungs, also has a critical role in scavenging ET-1 from the plasma. The third major function is ET-1 activation of ET(B) in in the nephron to reduce salt and water re-absorption. In contrast, ET(A) predominate on smooth muscle, causing vasoconstriction and mediating many of the pathophysiological actions of ET-1. The role of the two receptors has been delineated using highly selective ET(A) (BQ123, TAK-044) and ET(B) (BQ788) peptide antagonists. Nonpeptide antagonists, bosentan, macitentan, and ambrisentan, that are either mixed ET(A)/ET(B) antagonists or display ET(A) selectivity, have been approved for clinical use but to date are limited to pulmonary hypertension. Ambrisentan is in clinical trials in patients with type 2 diabetic nephropathy. This review summarizes ET-receptor antagonism in the human kidney, and considers the relative merits of selective versus nonselective antagonism in renal disease.Supported by the British Heart Foundation (PS/02/001, PG/05/127/19872, FS/12/64/130001), Wellcome Trust Programme in Metabolic and Cardiovascular Disease 096822/Z/11/Z, National Institute for Health Research Cambridge Bio-medical Research Centre, and the Pulmonary Hypertension Association United Kingdom.This is the final published version. It first appeared at http://www.seminarsinnephrology.org/article/S0270-9295%2815%2900028-5/abstract

    Chemerin receptors in GtoPdb v.2021.3

    Get PDF
    Nomenclature for the chemerin receptors is presented as recommended by NC-IUPHAR [15, 43]). The chemoattractant protein and adipokine, chemerin, has been shown to be the endogenous ligand for both chemerin family receptors. Chemerin1 was the founding family member, and when GPR1 was de-orphanised it was re-named Chermerin2 [43]. Chemerin1 is also activated by the lipid-derived, anti-inflammatory ligand resolvin E1 (RvE1), which is formed via the sequential metabolism of EPA by aspirin-modified cyclooxygenase and lipoxygenase [2, 3]. In addition, two GPCRs for resolvin D1 (RvD1) have been identified: FPR2/ALX, the lipoxin A4 receptor, and GPR32, an orphan receptor [45]

    Oxoglutarate receptor in GtoPdb v.2023.1

    Get PDF
    Nomenclature as recommended by NC-IUPHAR [3]

    Chemerin receptors in GtoPdb v.2023.1

    Get PDF
    Nomenclature for the chemerin receptors is presented as recommended by NC-IUPHAR [15, 44]). The chemoattractant protein and adipokine, chemerin, has been shown to be the endogenous ligand for both chemerin family receptors. Chemerin1 was the founding family member, and when GPR1 was de-orphanised it was re-named Chermerin2 [44]. Chemerin1 is also activated by the lipid-derived, anti-inflammatory ligand resolvin E1 (RvE1), which is formed via the sequential metabolism of EPA by aspirin-modified cyclooxygenase and lipoxygenase [2, 3]. In addition, two GPCRs for resolvin D1 (RvD1) have been identified: FPR2/ALX, the lipoxin A4 receptor, and GPR32, an orphan receptor [46]

    Chemerin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Nomenclature for the chemerin receptors is presented as recommended by NC-IUPHAR [14, 41]). The chemoattractant protein and adipokine, chemerin, has been shown to be the endogenous ligand for both chemerin family receptors. Chemerin1 was the founding family member, and when GPR1 was de-orphanised it was re-named Chermerin2 [41]. Chemerin1 is also activated by the lipid-derived, anti-inflammatory ligand resolvin E1 (RvE1), which is formed via the sequential metabolism of EPA by aspirin-modified cyclooxygenase and lipoxygenase [2, 3]. In addition, two GPCRs for resolvin D1 (RvD1) have been identified: FPR2/ALX, the lipoxin A4 receptor, and GPR32, an orphan receptor [43]

    Motilin receptor in GtoPdb v.2021.2

    Get PDF
    Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. There are significant species differences in the structure of motilin and its receptor. In humans and large mammals such as dog, activation of these receptors by motilin released from endocrine cells in the duodenal mucosa during fasting, induces propulsive phase III movements. This activity is associated with promoting hunger in humans. Drugs and other non-peptide compounds which activate the motilin receptor may generate a more long-lasting ability to increase cholinergic activity within the upper gut, to promote gastrointestinal motility; this activity is suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibiotics (often called motilides; e.g. erythromycin, azithromycin), although for many of these molecules the evidence is sparse. Relatively high doses may induce vomiting and in humans, nausea

    Thyrotropin-releasing hormone receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Thyrotropin-releasing hormone (TRH) receptors (provisional nomenclature as recommended by NC-IUPHAR [13]) are activated by the endogenous tripeptide TRH (pGlu-His-ProNH2). TRH and TRH analogues fail to distinguish TRH1 and TRH2 receptors [28]. [3H]TRH (human, mouse, rat) is able to label both TRH1 and TRH2 receptors with Kd values of 13 and 9 nM respectively. Synthesis and biology of ring-modified L-Histidine containing TRH analogues has been reported [22]
    • …
    corecore